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The equivalence of the method of magnetic relaxation to  a variational problem with 
an infinity of constraints is established. This variational problem is solved in 
principle and approximations to the exact solution are compared to results obtained 
by numerical relaxation of fields with a single stationary elliptic point. In  the case 
of a finite energy field of the above topology extending to infinity, we show that the 
minimum energy state is the one in which all field lines are concentric circles and that 
this state is topologically accessible from the original one. This state is used as a 
reference state for understanding the relaxation of fields constrained by finite 
boundaries. We then consider the relaxation of fields containing saddle points and 
confirm the tendency of the saddle points to collapse and form two Y-points. An 
infinite family of local equilibrium solutions each describing a Y -point is provided. 

1. Introduction 
A method for the determination of a wide family of steady rotational solutions of 

the Euler equations was suggested by Arnol’d (1974)f, and later developed by 
Moffatt (1985). This method exploits the well-known exact analogy between steady 
Euler flows and magnetostatic equilibria in a perfectly conducting fluid, and uses a 
technique of magnetic relaxation to a (minimum energy) magnetostatic state. The 
analogy implies that  the results derived in this paper apply equally to  magnetostatic 
fields or Euler flows. The proposed method has been implemented for certain two- 
dimensional configurations by Bajer (1989) who has demonstrated the tendency for 
the formation of tangential discontinuities of field due to  collapse of saddle points 
(see also the discussion of Mofiatt 1990, 98). I n  the present paper, we develop a 
modified computational procedure with an improved time-stepping algorithm for 
two-dimensional magnetic relaxation, and we use this to  determine a family of flows 
in a closed (square) domain with a single elliptic stagnation point. We also study 
saddle point collapse, and confirm the tendency to form discontinuities in the manner 
described by Bajer. 

Let us consider an incompressible fluid ( V - u  = 0) which is contained in a domain 
9 with boundary a 9  on which u.n  = 0. Assume further that  the fluid is perfectly 
conducting and that a magnetic field B(x,  t )  satisfying V. B = 0 and 

B - n = O  on 8 9  (1.1) 

is embedded in it. Condition (1.1) persists under evolution described by the frozen 
field equation. The magnetic energy of this field is given by 

t Arnol’d attributes the conception of this method to Ya. B. Zel’dovich. 
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and this changes according to the equation 

where j = V A B. The objective is to adopt the simplest possible equation of motion 
for the fluid. This equation must incorporate the Lorentz forcej A B per unit volume, 
must allow u(x ,  t )  to be incompressible and must further include a term which will 
dissipate energy. Such an equation of motion is 

(1.4) &/at = - V p  i-j A B- k ~ ,  

where k > 0 and p(x, t )  is the pressure field satisfying 

V 2 p = V * ( j  A B) in 9, 
t)p/an=n.(jA B) on ZB. 

dB is the kinetic energy of the flow then If K(t )  = 

t = s ,  dK u . ( j  A B)dV-2kK 

so that from (1.3) and (1.5) 
d 
dt 
- (H(t) +K(t))  = -2kK. 

Hence for as long as K(t)  > 0 the total energyM+K is monotonically decreasing and, 
being positive, must tend to a limit. Dropping the au/at term in (1.4) is equivalent 
to assuming an instantaneous velocity field. The energy balance then becomes 

dM - = -2kK 
dt 

and it seems plausible to expect that, whatever the initial conditions, 

as t - tco .  
K(t)  + 0 
M ( t )  const. 

Suppose that the initial conditions are 

B(x,O) = B,(x). (1.9) 

The initial Lorentz force (V A B,) A B, will in general not be irrotational and the 
pressure forces will not be able to balance it, hence motion will ensue. For all finite 
time t the flow u(x,t) remains smooth and the field B is convected through 
topologically equivalent states. As t + 00 though, the volume-preserving mapping 
induced by u(x,  t) may develop discontinuities (in the manner described by Moffatt 
1985) and consequently the convected field may develop singularities although the 
total magnetic energy is bounded above by its initial value. For a non-trivial 
topology the final magnetic energy is also bounded below and away from zero 
(Arnol’d 1974; Freedman 1988). 

An initial field B,, therefore relaxes to a non-trivial equilibrium state BE which is 
topologically accessible from B,(x). This means that B,(x) is convected to BE(x) by 
a smooth incompressible flow u(x,t) (0 < t < 00) which dissipates a fraction of the 
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initial magnetic energy. It should be noted that for most fields there may be more 
than one equilibrium state although in general only one of them will have the least 
energy. 

Boyd & Ma (1990) investigated flows describing a solitary pair of contra-rotating 
vortices (usually named a modon), with the flow in the modon's exterior being 
irrotational. By prescribing the modon's shape (which they chose to  be elliptical) 
they computed the relationship between the vorticity and the stream function of the 
rotational flow using a spectral method. I n  the frame moving with the modon (in 
which u -f 0 as 1x1 + 00) the flow in its interior is a steady Euler flow. In  the present 
paper we similarly prescribe the boundary shape and the topology of the initial 
magnetic field but then allow it  to relax dynamically to a magnetostatic equilibrium 
state. By virtue of the exact analogy between steady Euler flows and magnetostatic 
equilibria in a perfectly conducting fluid, the equilibrium magnetic field also 
describes a steady Euler flow. An investigation of the influence of the boundary and 
the field topology on the relationship between the equilibrium flux function and the 
current density is described in $2, 

In  the magnetostatic context the formation of field discontinuities during 
relaxation has been invoked by Parker (1983, 1987) to explain the heating of the 
solar corona. Parker has argued that the slow motion of the footpoints of magnetic 
lines in the solar corona causes the magnetic field to  readjust continuously to force- 
free states. This continuous relaxation of the field causes saddle points to collapse, 
creating current sheets which rapidly dissipate magnetic energy in their vicinity. I n  
$ 3, we have found an infinite family of two-dimensional magnetostatic states 
describing the magnetic field in the vicinity of a collapsed saddle point. Each of these 
fields satisfies an equation similar to one analytically investigated by Parker (1990) 
and Vainshtein (1990). 

2. Two dimensional magnetic relaxation of fields with the simplest 
topology 

2.1. Variational formulation 
Consider the magnetic relaxation of a field embedded in a two-dimensional domain 
9, the magnetic field B being given by a flux function ~ ( x ,  y, t ) ,  

B = ( ax /a~ ,  -ax/&, 0). (2.1) 

The B-lines are given by the contours ~ ( x ,  y, t )  = const. and without loss of generality 
we can suppose that x = 0 on 39. Suppose that the initial flux function xo(x, y)  has 
only one stationary point 0 in the interior of 9 and that this is a maximum. Then 
B = 0 a t  0 and the B-lines are elliptic in a neighbourhood of 0. 

Let d' (x , )  be the area enclosed by the contour line xo(x,  y) = xc  where xc  satisfies 
0 < xC < xmax. I n  this interval d ( x c )  is monotonically decreasing with 

-Ql(O) = 4 and d ( x m a x )  = 0, (2.2) 
where do is the area of the domain 9. During relaxation the B-lines are frozen in the 
fluid and the frozen field equation in two dimensions simplifies to Dx/Dt = 0. Since 
the flow is incompressible the area inside any such B-line is conserved, which implies 
that  the function d ( x )  continues to  characterize the field for all times. It is thus 
reasonable to call d ( x )  the signature function of the field (Moffatt 1986). 

The asymptotic equilibrium field described by a flux function x*(x, y)  satisfies 

V2XE = F(x" )  (2.3) 

19 FLM 246 
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for some current function F ( x E ) ,  which will in principle be determined by the 
signature function and the shape of the boundary a9. 

The relationship between F ( x E )  and the signature function for a general boundary 
can be expressed via the following variational problem. The functional 

is to be minimized subject to the family of constraints 

(2.4) 

(2.5) 

Without the influence of the boundary, each B-line would tend to minimize its length 
keeping its contained area constant; thus in the case of a circular or unbounded 
domain it is plausible to conclude that the whole field will relax to a configuration of 
concentric circles. For different boundary shapes however the boundary plays a 
constraining role and the general solution is non-trivial. 

For any smooth field G(x,  y), the two-dimensional divergence theorem states 

G - n d l =  1 V.GdS.  (2.6) + X(", Y)"XC X ( " ,  Y) 2 x c  

Choosing G = (x, y) and using the fact that  PI = -Vx/JVxl, it follows that 

Consider the area element 6 d  contained between two smooth B-lines with flux 
function values xc and xc+6xc. Then 

(cf. Batchelor 1965, $3) and therefore 

Consider also the ' magnetic circulation ' function 

B - d x  = f IVXldZ. K(Xc) = f 
x(2, Y)'XC X(Z, Y)=xc 

By setting G = Vx in (2.6) we see that 

K(xc)  = -1 V'XdS. 
x(z, Y) axc 

In equilibrium V2xE = F(xE) and thus 

(2.9) 

or (2.10) 
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which is a result holding for all boundaries and signature functions. We thus see that 
the equilibrium current - F ( x E )  = - V2xE is inversely proportional to d d l d x  (which 
never vanishes) and is also proportional to the equilibrium rate of change of magnetic 
circulation across the B-lines. 

Returning to the variational form of this problem, the constraint equation (2.5) 
can be written as (2.7), or rather 

where p(x) is the Lagrange multiplier function corresponding to the infinite number 
of constraints imposed by (2.5). The constraint equation (2 .5)  can be thus rewritten 
in the form 

(2.11) 

To minimize the energy functional (2.4) subject to the family of constraints (2.11) we 
construct the Lagrangian 

The Euler-Lagrange equation for stationary values of 9 is 

We now define a new Lagrange multiplier function h ( ~ )  by 

(2.12) 

Hence h ( ~ )  and p ( x )  are related through d ( x )  so that if h ( ~ )  is determined then p ( x )  
can be found also. The equation (2.12) is then equivalent to 

dd/dX ’ 
(2.13) 

where the Lagrange multiplier function h ( ~ )  can be determined in principle by 
imposing the boundary condition (2.7). Comparing (2.13) to (2.10), it  is evident that 

(2.14) 

2.2. Dependence of the signature function on the boundary shape 
It was mentioned before that dd /dX < 0, d ( 0 )  = 4 and d(xmax) = 0. Are these all 
the restrictions on the signature function, and can dd/dX for example take any 
negative value throughout its domain ? Consider a magnetic field inside a bounded 
convex domain 9 whose boundary contains a corner or cusp at a point 9; at this 
point the magnetic field B must vanish. Arbitrarily close to the boundary the B-lines 
are smooth and thus d d l d x  is given by (2.8). I n  the vicinity of 9, however, IB( = 
10x1 can be chosen to be arbitrarily small which suggests that the integrand in (2.8) 

19-2 
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FIGURE 1. Form of a smooth field in the vicinity of a corner of angle 

must have an integrable singularity as x + 0. (This is similar to the behaviour of the 
signature of Hill's spherical vortex (Moffatt 1988, 3 3).) To analyse the asymptotic 
behaviour of d d / d x  close to a boundary containing a corner of angle 2$ assume that 
x can be expanded in powers of r in a neighbourhood of the point 8. Let us assume 
that 

~ ( r ,  6 )  = ( r /a ) " f (8 )  + higher-order terms (2.15) 

for r < a and -q5 < 0 d 9. Further assume that the current -V2x is finite in the 
neighbourhood of 9, so that c1 2 2. Since x vanishes on a 9  this implies that 

(2.16) 
f(6) N al($-B)+a,(q5-6)2+... for 8 - 9, 
f ( 8 )  - bl($+8)+b2(q5+6)2+... for Om--#, 

the existence of fractional powers of q5k6 smaller than two being excluded by 
assuming that the current is finite for 101 < q5. Since the radial component of the 
magnetic field is also assumed to be non-vanishing on the boundary for r + 0, this 
implies that  a, =k 0 and b, + 0. Since the main contribution to the behaviour of 
d d / d x  as X - f O  comes from the neighbourhood of the point 9, the asymptotic 
behaviour can be calculated by integrating (2.8) along the B-line ~ ( r ,  6) = xc inside 
a radius L 4 a from 9 (see figure 1) : 

I 

where xc = (L/a)"f(a$,(x,,L)) for cr = f 1 and 

and thus some elementary calculations give 

as x+O. 
for CL > 2 

(2.17) 

(2.18) 
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2.3. Dependence of the equilibrium magnetic circulation on the boundary shape 
We similarly expect that any possible singular behaviour of dK(x,)/dx, as xc -+ 0 will 
be caused by the existence of corners or cusps on the boundary. I n  the case of a non- 
re-entrant corner (subtending an angle smaller than 71: radians) assume again that 
near 9, x satisfies (2.15), (2.16). Then by similarly integrating (2.9) along a B-line 
~ ( x ,  y) = xc inside a radius L from 9 and by letting xc  -+ 0 

(2.19) 

where K is a non-zero constant. The main contribution to this integral comes from the 
points where f ( 0 )  is small, i.e. from the endpoints of integration. Substituting f ( 0 )  
from (2.16), one finds that 

logx when a: + bi $: 0} 
as x+0.  

dX K when ai+b;=O 
(2.20) 

It thus transpires that the asymptotic form of d d / d x  as xi- 0 only depends on the 
r-scaling of the magnetic field in the vicinity of the corner while dK/dX only depends 
on the angular variations of x. If the boundary contains more than one corner then 
the field inside the corner which gives the dominant contribution to the signature 
function will have to preserve its r-scaling for the signature function to be conserved. 

XE(r, 0) = ( r / a ) " f E ( 0 )  + higher-order terms 

Suppose the equilibrium field behaves like 

with fE(0) - aF(q5-0)+a,E(q5-0)2+... for 0 - 4, 
The Grad-Shafranov equation (2.3) indicates that the equilibrium current must have 
the same value on each B-line. If a > 2 thenj, = -r"-2[[fE"(0) +a2fE(0)]  to the lowest 
order in r ,  and by taking the limit r+O it is obvious that the equilibrium volume 
current density must vanish as we approach a9. (Note that a current sheet j ,  = --n 
A BI,, may flow on the boundary.) This immediately implies that a: = b: = 0 unless 

01 = 2. Combining (2.10), (2.18) cnd (2.20), it can be concluded that the asymptotic 
forms of the equilibrium current as x --f 0 due to a corner on the boundary are 

fE(0)  - b , E ( 4 + 0 ) + 6 3 4 + 0 ) 2 + . . .  for 0 - -4. 

xl-: for 01 > 2 

V 2 x -  l/logx for a = 2  and a?= b F = O  (2.21) 1 constant for CL = 2 and (aF)z+(bF)2 + 0. 

Therefore the equilibrium volume current always tends to zero as we approach the 
boundary unless a = 2 and a," = b,E = 0 whence it can take a finite non-zero value. 

2.4. Properties of h ( ~ )  
As mentioned above, h(x) can be either thought of as a Lagrange multiplier for a 
variational problem or defined through K(x) = -h(x)  d / ( d d / d X ) .  Hence, from 
(2.14) 

(2.22) 
h(xc) =-f 1 "$ IVXldl 

- o z ( x c )  X(". f/)=xc IVXl X(",  Y)'Xe 

and by using the Cauchy-Schwarz inequality it can be shown that 

(2.23) 
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where Y(x , )  is the length of the B-line x(x, y) = xc and d ( x , )  is the area it contains. 
Thus h is always larger than 471 and the equality in relation (2.23) is attained only 
when IVx( is constant along the B-line. 

A set of B-lines ~ ( x ,  y) = const. is self-similar with respect to an elliptic point a t  the 
origin when  ax, ay) -xmax = h(a) ( ~ ( x ,  y) -xmax) with h( 1) = 1 .  This means that 
any uniformly stretched B-line (2, y) -+ a(x, y) coincides with another B-line of the set. 

LEMMA. If x x x +  yxy = F ( x )  then ~ ( x ,  y) describes a set of self-similar B-lines. 

Proof. I f f  is a monotonic function and x(x,y) describes a set of B-lines then 
f ( ~ ( x ,  y)) also describes the same set since x ( x ,  y) = const. implies that f ( ~ ( x ,  y)) = 
const. Given that xxz+yxy = F ( x )  we seek a function #(x, y) =f(x(x, y)) such that 

x $ z + ~ # y  = c($-$rnax) (2.24) 

(2.25) 

which has a solution if F ( x )  only vanishes a t  x = xmax (since f is assumed to be 
monotonic). Considering the general solution of (2.24) 

$(x, y) = #,ax + J ~ c n )  x ~ y c - ~  dh 

it is obvious that $(x, y) - #,,, is a homogeneous function of order c, therefore 

#(ax,a~)-#max = aC($(x ,  ~ ) - 4 r n a x ) -  

Thus if $ describes a set of self-similar B-lines, then so does x. 
Example. The flux function x = xmax sin (in - x2 - yz) satisfies 

X X ~ + Y X ~  = -2Xrnax(~7I--rcsin(X/X,ax)) [ 1 - ( ~ / x m a x ) ~ 1 ~  = F ( x ) .  
Equation (2.25) then gives that $(x, y) = f ( ~ ( x ,  y)) with 

f ( x )  =f (xmax)  -in +arcsin WXrnax) 

satisfies x#,+y#, = 2# which proves that both $ and x are self-similar flux 
functions. 

If the equilibrium field resulting from a relaxation procedure has self-similar B- 
lines then the constraint equation (2.7) can be simply written as d = +(xxX+yxy) 
dd/dX. This simplified form leads to (2.13) with h(x) = const. Consider now two flux 
functions xl(x, y) and x 2 ( x ,  y) = f (XI(%, y)) with f (x) being a monotonic function such 
that both flux functions vanish on the boundary and attain the same maximum 
value xmax a t  the elliptic point. The B-lines of the two fields are geometrically 
identical although the magnetic field might not take the same value a t  geometrically 
equivalent points. Let us consider the values of A corresponding to two geometrically 
identical B-lines of the two fields, say xl(x, y) = xc and x2(x ,  y) = f (x,). Then using 
(2.22) 
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Since f is a monotonic function, f ( x l )  =f(x,) implies that xl(x,y) = xc and 
d( f (x , ) )  = d(x,) since the two flux lines considered are geometrically identical. 
Therefore h,(xc) = h,(f(xc)) which proves that h ( ~ )  is a purely geometrical property 
of the B-lines. This also explains why h ( ~ )  is constant when the B-lines are self- 
similar, since they all have the same shape. 

The dependence of the current distribution on the boundary shape is maintained 
through h ( ~ )  since the boundary is a B-line and thus h ( ~ )  implicitly depends on its 
shape. For example, for x = 1 - (x /a)2n  - ( z J / ~ ) ~ "  a simple calculation yields 

For n = 1, A = 2x(a/b+b/a) (result for circles and ellipses) and for n+ co, A+ 16 
although such a field would be unphysical because it represents a set of self-similar 
square-shaped B-lines with discontinuous magnetic field a t  the vertices. However for 
n finite Ih(n)l < 16. Hence h attains its infimum (4n) in the case of concentric circles. 

Consider a magnetic field B,,(x) with the usual elliptic topology extending to 
infinity. Let ~ ( x ,  y) = xmax at the origin and x -+ 0 as T +  CO. Assume further that the 
field's strength falls off faster than l / r  so that the total magnetic energyM(0) is finite. 
If the field is left to relax magnetically then in equilibrium the final energy ME will 
be given by 

A simple integration by parts using (2.27) then gives 

(2.28) 

Therefore, since d ( x )  is invariant, the minimum energy of the field is attained when 
h is minimized. Since in this case there is no boundary constraining the behaviour of 
h ( ~ ) ,  the minimum energy is attained when h ( ~ )  = 4x and all the B-lines have relaxed 
to circles. This argument shows that this configuration has the least possible energy 
but to show that such a state is topologically accessible one must find a continuous 
incompressible flow that can advect the initial field to the final one. From the theory 
of suspensions in dynamical systems (Arrowsmith & Place 1990, p. 36) it is known 
that if a continuous area-preserving orientable map can be found such that it maps 
the initial field to the final configuration we are interested in, then the required flow 
can be constructed from this map. (This theorem is valid under certain restrictive 
conditions which are certainly satisfied for the maps from R2 to R2 with which we are 
concerned here.) It is therefore required to map an initial field B, to a final field BE 
with circular lines of force which represents the minimum energy state. Thus every 
initial point ( r ,  19) + (r', el), where nr', = d ( ~ ( r ,  0 ) )  since the area inside every B-line 
is conserved, and f ( r , O )  is unknown. For the map to be area-preserving and 
orientable 

This equation's characteristics are the initial B-lines, hence a solution for 8' in the 
whole plane exists excluding the origin. A local analysis of the solution's behaviour 
in the vicinity of the origin shows that we can analytically continue the solution for 
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8' there. Naturally some 'initial' condition must be imposed on 8'; an example is 
e'(r,O) = 0. We have thus shown that the ground-state energy configuration for a 
magnetic field with an elliptic topology extending to  infinity is one in which all the 
B-lines have relaxed to circles. 

To conclude this section it should be noted that h(xe) depends on the shape of the 
B-line x(x,y) = xc and also on the way this shape is changing with xc. This is 
indicated by its behaviour when the boundary has a corner or a cusp a t  a point 9 
say. In such a case dd/dx+-rx  as x - f O  but K ( x )  remains bounded everywhere, 
which implies that  A+ co there. This singular behaviour indicates the difficulty of 
approaching a non-smooth boundary with smooth B-lines. Another way of 
interpreting this behaviour is to think of the Lagrange multiplier function as some 
sort of weighting for the infinite number of constraints described by (2.7). The fact 
that h becomes infinite on any boundary containing a sharp point indicates the 
strong constraint imposed by such a corner or cusp. 

2.5. Numerical results 
All the numerical experiments presented here were performed inside a square of 
unit area. A magnetostatic equilibrium solution inside a square is given by ,$ = 
sinmsinncy, and three initial fields of the form xo =f(g)  have been considered. By 
varying f three different appropriate signature functions were chosen and then the 
system was allowed t o  relax numerically using the dynamical prescription described 
in § 1 governed by the energy evolution equation (1.7). This model leads to a system 
of two coupled partial differential equations of the form 

(2.29) 

where B = W A ( O , O ,  x) and u = V A (O,O, $). These equations were discretized and 
then solved on a uniform mesh of size 6Ei2. To discretize (2.29) one must bear in mind 
that we must calculate up to third-order derivatives of the function x. To limit errors 
to order h2 in such derivatives we must calculate the first-order derivatives to order- 
h3 accuracy where h is the mesh size. Minimizing the error in the first-derivative 
estimate of any smooth functionf (Iserles & Nsrsett 1991, p. 124) one gets 

f ' ( X 0 )  = y + O ( h ' + " ) ,  
j=-r 

where r + s + 1 is the number of grid points we use, fi = f (xo + Zh) and the coefficients 
pi are given by 

( -  l)i+l r !  s! 
j = - r ,  ..., s ,  j $: 0 4 =  j ( ? " + j ) ! ( s - j ) ! '  

and 

1 2 : r < s + t .  
i=s+l 

It is very easy to generalize these formulae for functions of two variables and I have 
chosen r + s = 4 at all points on the grid, e.g. r = 0, s = 4 or r = 4 and s = 0 on the 
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boundary. Two methods were used to solve the Poisson equation; the multigrid 
method and a fast Poisson solver. The latter proved to be much more efficient and 
all the results shown here were produced using the TMSL library solver. The time- 
stepping methods experimented with were the Euler method, the fourth-order 
Runge-Kutta method with variable step size and the Burlisch-Stoer method. For a 
small number of points on the grid the Burlisch-Stoer routine was the fastest and 
most accurate, but for more refined meshes the fourth-order Runge-Kutta method 
proved to be more robust and significantly faster. 

The first field considered is 
xo  = (e5f- l ) / W ,  (2.30) 

with W being a normalizing factor so that l ~ ~ l ~ ~ ~  = 1. As figure 2 ( a )  shows this 
represents a magnetic field which is strong in the centre of the square. By comparing 
the relaxed field xE in figure 2 ( b )  to the initial field it can be seen that the B-lines have 
become more circular, confirming the anticipated tendency of B-lines to minimize 
their length while conserving the area they enclose. The plot of V2x0 against xo in 
figure 2(c) is as expected a scatter of points since the field is not in magnetostatic 
equilibrium although since the scatter is quite limited the field is perhaps not far from 
it. Since xo  - xy in the vicinity of each corner the field is in equilibrium there up to 
the first order in T .  We therefore expect that V2xE = 0 a t  xE = 0. This is confirmed 
in the dotted plot of V2xE against xF: in figure 2 ( d ) .  The Grad-Shafranov equation 
predicts a functional relationship between V2xE and xE, as seen in this  figure. 

The local Taylor expansion of xE near the elliptic. point a t  (0,O) has the form 
x" = xmax - c1 x2 - c2 y2 + . . . , where c, = c2 by symmetry. Hence sufficiently close to 
the centre the B-lines are circles so that h(xm,,) = 47c. The solid line in figure 2 ( d )  is 
the value of F ( x E )  predicted from (2.13) assuming that h(x) = 47c for all values of x. 
This is of course a crude approximat>ion since we know that h ( ~ )  --f m for x --f 0. Still 
the agreement between the dotted and solid curves was so good that one of them had 
to be slightly shifted to render them distinguishable. Figure 2 ( e )  shows t h e  magnetic 
energy during relaxation which by (1.7) decreases monotonically with time. I n  all 
computations the total magnetic energy was calculated at  each time step and the 
program automatically stopped as soon as the energy started increasing due to 
numerical instabilities. Finally figure 2 ( f )  shows the signature function of the initial 
field (solid line) which should be conserved during relaxation. Since the analytic form 
of the final field is unknown the only way to estimate the final field's signature 
function is to count the number of mesh points inside every B-line. This method can 
only provide us with a very rough estimate of the signature function and the 
laddered appearance of such plots (dotted line in the same figure) is pronounced a t  
points where the mesh is not fine enough for such an estimate to  be accurate. The 
reasonable agrecrnent of the dotted and solid curves does nevertheless confirm that 
the signature function is caonserved to a good approximation. 

The next field considered is 
x = (e-55- 1 ) / W >  (2.31) 

with W being the usual normalizing factor. This magnetic field shown in figure 3 (a )  
is strong close to the boundary of the domain. The relaxed field xE in figure 3 ( b )  is 
interesting since the B-lines in this case have become less circular as time evolved. To 
understand this behaviour consider the problem of an isolated flux tube inside the 
unit square. If the area it encloses is smaller than in then the tube can become 
circular and thus will tend to do so during relaxation. When the area it encloses is 
larger than in  the flux tube cannot become circular since it would not then fit inside 
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FIGURE 4. Minimum energy state for an isolated flux tube confined inside a square of unit area 
and eriulosing an area larger than an. 

the square. The boundary imposes an extra constraint on the tube which forces it to 
touch the sides of the square and join the straight segments with arcs of circles which 
are tangential to them a t  the points of contact (figure 4). In  the same way the global 
problem of minimizing the energy of a general field gives rise to  two opposing 
tendencies. The field lines which would fit in the boundary if they became circular try 
to do so while those which would not tend to follow the boundary shape. When the 
field energy is concentrated near the boundary, this boundary effect is dominant and 
the field evolves in this counterintuitive fashion. Figure 3 ( c )  is the plot of V2x0 
against xo and in comparison to figure 2 (c) the scatter of points here is much more 
pronounced. The asymptotic behaviour of xo close to  the corners is as before so that 
again we expect V2xE = 0 at  x E  = 0. The dotted plot of V2xE against x E  in figure 3 ( d )  
does not indicate this, although it confirms a clear functional relationship between 
the current and flux function of the magnetostatic field. The behaviour near xE = 0 
is, no doubt, due to the fact that the function F(x”)  has a steep gradient in the 
neighbourhood of xE = 0 and thus cannot be resolved with such a rough mesh (Mi2). 
The predicted current assuming that h ( x )  = 4.n is shown by the solid line in figure 
3 ( d )  and is now clearly quite inaccurate. The reason is that by assuming that h ( ~ )  = 
4n for every x we have not taken account of the effect of a non-circular boundary. 
Since the field is strong close to  the boundary it is not surprising that this 
approximation will be less accurate. It should be noted though that the qualitative 
behaviour of F(x”)  is still captured. Figure 3 ( e )  shows the magnetic energy during 
relaxation, the equilibrium energy being reached very rapidly. The solid line in figure 
3 ( f )  is the initial field’s signature function while the dotted one is the equilibrium 
field’s estimate of the signature function. 

The last field considered is 

x = {sinh (10) +sinh [20(5-+)] ) /W,  (2.32) 

providing a magnetic field that is strong both close to the centre and close to the 
boundary of‘the square (figure 5a) .  The equilibrium field in figure 5 ( b )  xE shows that 
the two parts of the field evolve as if they were decoupled : the central B-lines become 
more circular and those close to  the boundary become more nearly square. The plot 
of V2xo against xu in figure 5 ( c )  is more scattered for small values of xo, i.e. close to 
the boundary. The field has the same asymptotic form in the corners as in the 
previous examples and the dotted plot of V2xE against xE in figure 5 ( d )  does suggest 
that the equilibrium current vanishes on the boundary. The F(xE) prediction when 
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it is assumed that h(x) = 47t is again shown by the solid line in this figure. This 
prediction had to be slightly shifted since it perfectly overlapped with the numerical 
result for x > 0.5, although for small values of x the agreement was not perfect. The 
field’s energy during relaxation (figure 5 e )  shows rapid relaxation associated with the 
central field followed by much slower relaxation associated with the boundary field. 
The solid line in figure 5 ( f )  is the initial field’s signature function with the dotted one 
being the equilibrium field’s estimate of the signature funct,ion. 

It is interesting that in all three cases considered the scatter of points in the plots 
of the initial current against the initial flux function values was more pronounced for 
small values of xo,  i.e. close to the boundary. This suggests that the magnetic fields 
evolve so as to accommodate as well as possible the strong constraints imposed on 
them by the boundary. 

3. Two-dimensional magnetic relaxation of fields with saddle points 
3.1. Equilibrium field in the vicinity of a Y-point 

Consider now a field xo(x,y) containing one or more saddle points which is allowed 
to relax. Since the B-lines are hyperbolic in the neighbourhood of each saddle point, 
the Lorentz force may cause the angle between the separatrices to collapse to zero 
and tangential discontinuities of B may form through this mechanism. I n  general 
any initial field xo(x,  y) will be topologically characterized by the topology of the web 
of separatrices that divide the domain 23 into n subdomains and by the n signature 
functions corresponding to these subdomains. 

The fields considered here divide the flow domain into three or four subdomains gi 
with corresponding signature functions ,%(x). The domain used is the unit square and 
xo vanishes on the separatrices. As a generalization of (2.13) the equilibrium field xe 
is expected to  satisfy 

This equation has to be solved subject to the constraint that the total pressure is 
continuous on i%Bi for i = 1,2, . . . . An additional complication comes from the fact 
that in (2.13) h ( ~ )  depended implicitly on the boundary shape, which was fixed. Now, 
each h , ( ~ )  depends on the boundary shape of the subdomain 9$ which is not fixed. 
The analysis of the behaviour of the signature function in the presence of a corner on 
the boundary is also valid for a corner formed by the separatrices and i t  is thus 
interesting to investigate whether an initial field that in the vicinity of the saddle 
point behaves like 

xo(r,  0) = (r/a)afo(@) + higher-order terms 

can give relaxed solutions obeying (2.21) and describing a collapsed saddle point. 
We assume that the saddle point has collapsed onto a current sheet on the line 

6’ = -x and that the three separatrices forming the Y-point divide the domain 9 into 
the three convex subdomains 

g1: -8, G B G 0, (e,a o,o, 2 0 1 ,  
B2: 8, d 6’,<?c, 

g3: --x d 0 < -q. 
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Equations (2.21) are modified by replacing the term x ~ - ~ / ~  by J x J ~ - ~ / ~ .  This is 
necessary since x can now be both negative and positive in the vicinity of the saddle 
point. We hence adopt the equation 

vzx = A J X I I - %  in % for i = 1,2 ,3 ,  

which by setting X(r, 0) = (r/a).f(O) becomes 

f”(0)  +a”f(e) = A,lf(B)I’-: for i = 1 ,2 ,3 .  (3.2) 
The solution to this equation has to  vanish on the separatrices and must satisfy the 
total pressure continuity condition 

(3.3) 

where the braces denote the jump of the enclosed quantity across the separatrices. 
When r + 0, B -+ 0 and therefore {B2/8n} = 0 in the vicinity of r = 0. Hence according 
to (3.3), (P} = 0 and the magnetic field either is continuous or changes sign on each 
separatrix. Any solution of (3.2) must therefore satisfy f ’ (n )  = - f ’ (  -7c) in addition 
to f (  -n) = f (  -0,) = f ( 0 , )  = f ( n )  = 0. Without loss of generality assume that 
f ( 8 )  0 in the subdomain g1 and f’(0,) = 0 with -81 < 8, < O2. Equation (3.2) is 
unchanged under the transformation 0 + - 0 which implies that f ( 0 ,  - 0) = f (0 ,  + 0) 
i,i 9,, and therefore 0, = $(O2-O1) withf’( -0,) = - f ’ (02) .  Similarly, it can be shown 
that f ’ (  -7c) = -f’( -Ox) and f ’ (0 , )  = -f’(x) which proves that condition (3.3) is 
satisfied. The value off(@,) can be absorbed into the constant A ,  so it can be assumed 
that f(0,) = 1.  Equation (3.2) is solved by the method of shooting. A value of A ,  is 
chosen and (3.2) is solved using the fourth-order Runge-Kutta method with initial 
conditions f ( 0 )  = I ,  f ’ ( 0 )  = 0. Iff(  -$(B,  + 19,)) = f ( t ( 0 ,  + 0,)) do not vanish then the 
value of A ,  is varied until this condition is fulfilled. This solution is then shifted by 
8, = &0,-8,) andf(8) is determined in 9, and 9, by adjusting the values of A ,  and 
A ,  untilf( -n) = f ( n )  = 0. This equation can be thus solved for every a 2 2 giving 
rise to a wide family of solutions. 

The case a = 2 has been solved analytically by Vainshtein (1990) and the solution 
is given by 

(C(ax - y) (bx + y) for - arctan b < 0 d arctan a 

y(ax - y) for arctan a < 0 < 7c 
X =  (3.4) 

[ C ‘ F y ( y + b x )  for - n d 0 < -arctan b.  

Hence in the case 01 = 2 the current distribution is discontinuous across two of the 
separatrices and there is a current sheet on the third one. The strength of the current 
sheet for any a scales like ra-l. Figure 6 ( a ,  b )  shows the similarity functions f ( 0 )  
corresponding to values 01 = 2,3 .  Figure 6(c,  d )  shows the plots of V2x against x for 
the above values of a. The values of the constants Ai corresponding to these two a 
values can be found in the figure 6 caption. Figure 6 (e, f )  shows the magnetic fields 
corresponding to the above values of a for -$ < x, y < 8. 

This local analysis can be also applied to the behaviour of an equilibrium field close 
to a corner of angle 2q5 on the boundary. If 2 6  < 7c then the solution is well behaved 
but for angles 2~ >IT there is no continuous solution with finite current on the 
corner’s vertex. 
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3.2. Numerical results 
Two numerical experiments were performed inside a unit square using again the 
relaxation equations (2.29). The discretization scheme used is the same as before and 
the Poisson equation was again solved using the IMSL fast Poisson solver. The 
variable-step-size fourth-order Runge-Kutta method proved to be the only reliable 
time-stepping routine. There are serious numerical problems in following the collapse 
of the saddle point to its asymptotic limit since the gradients in the magnetic field 
increase rapidly with time, and the routine used would stop execution as soon as the 
magnetic energy of the field started increasing due to numerical instabilities. 

The first field considered is 

xo = [y -Px -;( 1 - p ) ]  [y +px -$( 1 + p ) ]  [exp (5 sin nx) - 11 sin (ny)/ W ,  (3.5) 

with p = 0.3 and W being a normalizing factor so that l ~ ~ l ~ ~ ~  = 1 .  As can be seen in 
figure 7 ( a )  this field divides the domain 2 in four subdomains and the plot of V2xo 
against xo appears in figure 7 (c). The relaxed field xE in figure 7 (6) shows evidence 
of'the collapse of the saddle point and the formation of a current sheet. Since the 
initial field scales like r2 in all corners formed by B-lines including the saddle point, 
we expect the equilibrium current to have a discontinuity across xE = 0 (on two of 
the separatrices). The high values of current for xE = 0 in the plot of V2xE against 
xE in figure 7 ( d )  give strong evidence of the formation of a current sheet on the third 
separatrix. Figure 7(e )  shows the evolution of the field's magnetic energy during 
relaxation. Unfortunately the field energy has not completely settled down a t  the 
end of the calculation but it is impossible to continue further in time since the steep 
gradients in the magnetic field introduce numerical instabilities which make the 
energy increase. The surface plot of V2xE in figure 7 ( f )  also supports the assumption 
of the formation of a current sheet between the two strong magnetic eddies of the 
field. 

The second field considered is 

xo = {[exp (5 sin ny) - l ]  exp (5 sin2 2nx) sin nx- [exp (5 )  - l]}/W, (3.6) 

with W being the usual normalizing factor. As figure 8(a)  shows this field consists of 
two strong eddies inside the unit square which divide the domain 9 into three 
subdomains. Figure 8(c) is again the scatter of points of V2xo against xo while the 
relaxed field is shown in figure 8(6). The structure of this field is called the rosette 
structure and is of great relevance to astrophysics (Vainshtein 1990). The initial field 
again scales like r2 in all corners formed by B-lines and we thus expect the equi- 
librium current to be discontinuous across xE = 0. The scatter of points near xE = 0 
in figure 8 ( d )  of VZxE against xE underlines the difficulty of handling numerically 
a discontinuity of current and also hints at a persisting disequilibrium there. Figure 
8 ( e )  is the energy plot of this field during relaxation and the equilibrium current 
surface plot in figure S ( f )  strongly supports the conclusion that a current sheet is 
being formed on one of the separatrices. We have not predicted the form of the 
equilibrium current distribution for these two fields using equation (2.13), since i t  is 
not possible to analytically calculate the signature functions corresponding to the 
initial fields. The reason is that  the variables x and y cannot be separated in the initial 
field definitions (3.5), (3.6) and hence the signature functions cannot be written in a 
simple integral form. This is a completely practical problem though and in principle 
such a prediction can be made. 
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FIGURE 7 .  Magnetic relaxation results for field (3.5) (a )  Initial B-lines (xo = const.). ( h )  The 
numerically relaxed field xE. (c) Vzxo against xo .  This is ,just a scatter of points since xo is not in 
equilibrium. (d ) V2x" against xE giving evidence of a functional relationship between the 
equilibrium current) -V2xE and the equilibrium flux function xE. The persistent scatter of point,s 
around xE = 0 is a sign of disequilibrium in the vicinity of t,he saddle point. ( e )  Magnetic energy 
during relaxation of the field (the initial energy has been normalized to unity). (f) Surface plot of 
equilibrium current - V2xE with high values near the collapsed saddle point. 
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4. Conclusions 
I n  this paper we have used a magnetic relaxation method to find a family of 

nonlinear two-dimensional magnetostatic equilibria. Using the exact analogy 
between a magnetostatic equilibrium and a steady Euler flow an equilibrium 
flux function xE can be replaced by an analogous stream function +". For the case 
of a flow with elliptic streamline topology we have seen that when the flow is strong 
close to the boundary of the domain then the steady Euler flow streamlines tend to  
align themselves with the boundary while for other cases they become more circular. 
When the initial field contains saddle points, the steady Euler flow obtained contains 
a number of vortex sheets which will presumably be unstable to a Kelvin-Helmholtz 
type of instability. Even so this suggests that  the existence of vortex sheets might 
be a generic feature of steady Euler flows, which can be regarded as unstable fixed 
points in the function space in which unsteady solutions of the Euler equations 
evolve (Moffatt 1985). Any such unsteady solution is represented by a trajectory in 
this function space and very often it spends long periods of time close to such 
unstable fixed points. Study of such steady Euler flows of prescribed streamline 
topology can therefore give us valuable information about the structure of turbulence 
and their existence could not be inferred other than via the magnetic relaxation 
met hod. 

tinder two-dimensional magnetic relaxation every field line tries to  minimize its 
length while preserving the area it encloses. This can therefore be treated as a 
variational problem with an infinity of constraints. This problem was formulated in 
terms of a Lagrange multiplier function A ( x ) ,  which was shown to be a geometric 
property of the field lines. For the case of a finite-energy field containing a stationary 
elliptic point and extending to infinity we have shown that the minimum energy 
state is the one where all field lines have become concentric circles and that this state 
is topologically accessible from the original one. This state provides a useful reference 
state for understanding relaxation constrained by finite boundaries. 
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